ارائه‌ی مدل تحلیل پوششی داده‌های چندمرحله‌ای برای ارزیابی شبکه‌ی زنجیر‌ه‌ی تأمین پایدار شرکت‌های تولیدکننده‌ی لاستیک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار دانشکده مدیریت و حسابداری، پردیس فارابی دانشگاه تهران

2 استادیار دانشکده اقتصاد و مدیریت، دانشگاه قم، ایران

3 کارشناسی ارشد مدیریت صنعتی، دانشکده اقتصاد و مدیریت، دانشگاه قم، ایران

چکیده

در دنیای امروزی سازمان‌ها برای بقا ‌باید هزینه‌های خود را کاهش دهند و بهره‌وری خود را بهبود بخشند. یک تلاش که می‌تواند برای افزایش بهره‌وری انجام شود، عملکرد مدیریت زنجیره‌ی تأمین است. هم‌چنین پایداری در زنجیره‌ی تأمین که چالش‌های جدی زیست‌محیطی را درنظر می‌گیرد، با تولید محصولات سبز، از ایجاد هر نوع آلودگی بر زندگی انسان‌ها جلوگیری می‌کند. هدف اصلی ‌این مقاله ارائه‌ی مدل تحلیل پوششی داده‌های چندمرحله‌ای، برای ارزیابی شبکه‌ی زنجیره‌ی تأمین پایدار شرکت‌های تولیدکننده‌ی تایر است. روش انجام پژوهش حاضر تحلیلی- توصیفی‌ست و ازنظر هدف، کاربردی‌ست.
یکی از روش‌هایی که می‌تواند برای ارزیابی عملکرد تأمین‌کننده‌ی پایدار مورداستفاده قرار گیرد، تحلیل پوششی داده‌های چندمرحله‌ای‌ست. جامعه‌ی پژوهش‌ این تحلیل، 10 شرکت تولیدکننده‌ی تایر و لاستیک است و عملکرد ‌این شرکت‌ها طی سه سال 1392، 1393 و 1394، در این تحلیل موردبررسی قرارگرفته است. بر اساس نتیجه‌های به‌دست‌آمده، در سال 1392، لاستیک سیمرغ و لاستیک پارس رتبه‌ی یک، در سال 1393 لاستیک بارز، کویر تایر و لاستیک پارس رتبه‌ی یک و در سال 1394، لاستیک بارز، کویر تایر، لاستیک پارس و ایران تایر رتبه‌ی یک را به‌دست آورده‌اند.

کلیدواژه‌ها


1. Hassini, E., Surti, C., & Searcy, C. (2012). A literature review and a case study of sustainable supply chains with a focus on metrics. International Journal of Production Economics, 140 (1), 69- 82.
2. Elkington, J. (1997), "Cannibals with forks: The triple bottom line of 21st century business", Capstone, Oxford University Press.
3. Tajbakhsh, A., & Hassini, E. (2015). A data envelopment analysis approach to evaluate sustainability in supply chain networks. Journal of Cleaner Production, 105, 74- 85.
4. Mincer, J., )2008(. The color of money: sustainability has become more than a buzzword among corporations. It has become smart business. Wall Str. J. Retrieved from this online source: http://online.wsj.com/article/ SB122305414262702711.html.
5. UNESCO. (2012). Education for Sustainable Development in Action.
6. Saisana, M., Tarantola, S., )2002(. State- of- the- Art Report on Current Methodologies and Practices for Composite Indicator Development. European Commission, Joint Research Centre, Institute for the Protection and the Security of the Citizen, Italy.
7. Cooper, W. W., Seiford, L. M., Tone, K., (2007) Data Envelopment Analysis: a Comprehensive Text with Models, Applications, References and DEA-solver Software. Springer, USA.
8. Tavana, M., Mirzagoltabar, H., Mirhedayatian, M., Farzipoor Saen, R., Azadi, M., )2013(. A New Network Epsilon-Based DEA Model for Supply Chain Performance Evaluation, Computers and Industrial Engineering, 66(2), 501- 513.
9. Tajbakhsh, A., Elkafi Hassini, (2014). A data envelopment analysis approach to evaluate sustainability in supply chain networks, Journal of Cleaner Production.
10. Azadi, M., Mostafa Jafarian, Reza Farzipoor Saen, Seyed Mostafa Mirhedayatian, (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness supplier sin sustainable supply chain management context, Computers & Operations Research, 54, 274- 285.
11. Ping Shi, Bo Yan, Song Shi, Chenxu Ke, (2014). A decision support system to select suppliers for a sustainable supply chain based on a systematic DEA approach, Information Technology and Management, 16(1), 39- 49.
12. Mirhedayatian, S. M., Azadi, M., Farzipoor Saen, R., (2014). A novel network data envelopment analysis model for evaluating green supply chain management, International journal of production economics, 147, 544- 554.
13- عباس شول، مقصود امیری، لعیا الفت، کاوه خلیلی دامغانی، 1393. طراحی شبکه زنجیره‌ی تأمین چند دوره‌ای و چندمحصولی با استفاده از رویکرد ترکیبی برنامه‌ریزی ریاضی چندهدفه و تحلیل پوششی داده‌ها.
14. Chiang Kao, (2014). Efficiency decomposition for general multi-stage systems in data envelopment analysis, European Journal of Operational Research, 232 (1), 117- 124.
15. Talluri, S., Baker, R. C., (2002). A multi- phase mathematical programming approach for effective supply chain design. European Journal of Operational Research. 141 (3), 544- 558.
16. Talluri, S., Sarkis, J., (2002). A model for performance monitoring of suppliers. Int. J. Prod. Res, 40 (16), 4257- 4269.
17. Wong, W.P., Wong, K. Y., (2007). Supply chain performance measurement system using DEA modeling. Ind. Manag. Data Syst. 107 (3), 361- 381.
18. Amirteimoori, A., Khoshandam, L., (2011). A data envelopment analysis approach to supply chain efficiency. Adv. Decis. Sci. 2011, 1- 8.
19. Castelli, L., Pesenti, R., Ukovich, W., (2004). DEA-like models for the efficiency evaluation of hierarchically structured units. European Journal of Operational Research, 154 (2), 465e476.
20. Chen, Y., Liang, L., Yang, F., (2006a). A DEA game model approach to supply chain efficiency. Ann. Oper. Res. 145 (1), 5- 13.
21. Chen, Y., Zhu, J., (2004). Measuring information technology's indirect impact on firm performance. Inf. Technol. Manag. 5 (1- 2), 9- 22.
22. Chilingerian, J.A., Sherman, H.D., (2011). Health-care applications: from hospitals to physicians, from productive efficiency to quality frontiers. In: Handbook of Data Envelopment Analysis, 5(1- 2), 445- 493.
23. Cook, W.D., Hababou, M., (2001). Sales performance measurement in bank branches. Omega 29 (4), 299- 307.
24. Cook, W.D., Hababou, M., Tuenter, H. J., (2000). Multicomponent efficiency measurement and shared inputs in data envelopment analysis: an application to sales and service performance in bank branches. J. Prod. Anal, 14 (3), 209- 224.
25. Cook, W. D., Liang, L., Zhu, J., (2010). Measuring performance of two-stage network structures by DEA: a review and future perspective, Omega 38 (6), 423- 430.
26. Golany, B., Hackman, S.T., Passy, U., (2006). An efficiency measurement framework for multi- stage production systems. Ann. Oper. Res. 145 (1), 51- 68.
27. Kao, C., (2009a). Efficiency decomposition in network data envelopment analysis: a relational model. European Journal of Operational Research, 192 (3), 949- 962.
28. Kao, C., Hwang, S. N., (2008). Efficiency decomposition in two- stage data envelopment analysis: an application to non- life insurance companies in Taiwan. European Journal of Operational Research, 185 (1), 418- 429.
29. Liang, L., Cook, W. D., Zhu, J., (2008). DEA models for two-stage processes: game approach and efficiency decomposition. Nav. Res. Logist. 55 (7), 643- 653.
30. Liang, L., Yang, F., Cook, W. D., Zhu, J., (2006). DEA models for supply chain efficiency evaluation. Ann. Oper. Res. 145 (1), 35- 49.
31. Paradi, J. C., Rouatt, S., Zhu, H., (2011). Two-stage evaluation of bank branch efficiency using data envelopment analysis, Omega 39 (1), 99- 109.
32. Seiford, L.M., Zhu, J., (1999). Profitability and marketability of the top 55 US commercial banks. Manag. Sci, 45 (9), 1270- 1288.
33. Sexton, T. R., Lewis, H.F., (2003). Two- stage DEA: an application to major league baseball. J. Prod. Anal. 19 (2- 3), 227- 249.
34. Yang, F., Wu, D., Liang, L., Bi, G., Wu, D. D., (2011). Supply chain DEA: production possibility set and performance evaluation model. Ann. Oper. Res. 185 (1), 195- 211.
35. Zhu, J., 2000. Multi- factor performance measure model with an application to fortune 500 companies. European Journal of Operational Research, 123 (1), 105- 124.
36. Chen, C., Zhu, J., Yu, J. Y., Noori, H., (2012). A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis. European Journal of Operational Research, 221 (2), 348- 359.
37. Aoki, S., Naito, A., Gejima, R., Inoue, K., Tsuji, H., (2010). Data envelopment analysis for a supply chain. Artif. Life Robotics 15 (2), 171- 175.
38. Fare, R., Grosskopf, S., Whittaker, G., (2007). Network DEA. Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, 209e240.
39. Kao, C., 2009a. Efficiency decomposition in network data envelopment analysis: a relational model. European Journal of Operational Research, 192 (3), 949- 962.
40. Lewis, H. F., Sexton, T. R., (2004). Network DEA: efficiency analysis of organizations with complex internal structure. Comput. Oper. Res. 31 (9), 1365- 1410.
41. Troutt, M. D., Ambrose, P. J., Chan, C. K., (2001). Optimal throughput for multistage input-output processes. Int. J. Oper. Prod. Manag. 21 (1/2), 148- 158.
42. Bai, C., Sarkis, J., (2012). Performance measurement and evaluation for sustainable supply chains using rough set and data envelopment analysis, Sustain. Supply Chains, 223- 241.
43. Belu, C., (2009). Ranking corporations based on sustainable and socially responsible practices. A data envelopment analysis (DEA) approach. Sustain. Dev, 17 (4), 257- 268.
44. Blancard, S., Hoarau, J. F., (2013). A new sustainable human development indicator for small island developing states: a reappraisal from data envelopment analysis Econ. Model. 30, 623-635.
45. Chang, D. S., Kuo, L. C. R., Chen, Y. T., (2013). Industrial changes in corporate sustainability performance- an empirical overview using data envelopment analysis. J. Clean. Prod. 56, 147- 155.
46. Sarica, K., Or, I., (2007). Efficiency assessment of Turkish power plants using data envelopment analysis. Energy, 32 (8), 1484- 1499.
47. Sarkis, J., (2006). The adoption of environmental and risk management practices: relationships to environmental performance. Ann. Oper. Res. 145 (1), 367- 381.
48. Sarkis, J., Weinrach, J., (2001). Using data envelopment analysis to evaluate environmentally conscious waste treatment technology. J. Clean. Prod. 9 (5), 417- 427.
49. Sueyoshi, T., Goto, M., (2012). Environmental assessment by DEA radial measurement: US coal-fired power plants in ISO (Independent System Operator) and RTO (Regional Transmission Organization). Energy Econ. 34 (3), 663- 676.
50. Vazquez-Rowe, I., Villanueva- Rey, P., Iribarren, D., Teresa Moreira, M., Feijoo, G., (2012). Joint lifecycle assessment and data envelopment analysis of grape production for vinification in the Rias Baixas appellation (NW Spain). J. Clean. Prod. 27, 92- 102.
51. Xue, Y., (2010). Performance evaluation of green supply chain. In: E-Business and Information System Security, International Conference. IEEE, pp. 1- 4.
52. Zhang, B., Bi, J., Fan, Z., Yuan, Z., Ge, J., (2008). Eco- efficiency analysis of industrial system in China: a data envelopment analysis approach. Ecol. Econ. 68 (1), 306- 316.
53. Nouri, J., Hosseinzadeh Lotfi, F., Atabi, F., Sadeghzadeh, S. M., Moghaddas, Z., (2013). An analysis of the implementation of energy efficiency measures in the vegetable oil industry of Iran: a data envelopment analysis approach. J. Clean. Prod. 52, 84- 93.
54. Zhou, P., Ang, B. W., Poh, K. L., (2008). A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 189 (1), 1-18.
55. Cooper, W.W., Seiford, L.M., Tone, K., (2007). Data Envelopment Analysis: a Comprehensive Text with Models, Applications, References and DEA- solver Software. Springer, USA.
56. Banker, R. D., Morey, R.C., (1986). Efficiency analysis for exogenously fixed inputs and outputs. Oper. Res. 34 (4), 513- 521.