فعال‌ساز گرفته شده از نیشکر به عنوان یک جایگزین دوست‌دارمحیط‌زیست برای افزودنی‌های رایج پخت

نوع مقاله: مقاله ترجمه

نویسندگان

1 دکترای تخصصی. رئیس واحد تحقیق و توسعه - مواد و آمیزه شرکت ایران یاسا تایر و رابر، تهران، ایران

2 کارشناسی. دانشگاه آزاد اسلامی - واحد علوم و تحقیقات، تهران، ایران

چکیده

فعال‌سازها، افزودنی‌های لازم در تهیه‌ی آمیزه‌های لاستیکی هستند. اگر چه اکسیدروی به همراه اسیداستئاریک اکثرا استفاده می‌شوند، اما به علت رفتگی  تایر صدمات زیست‌محیطی را ایجاد می‌کند که درنتیجه‌ی پیامد رهاسازی آمیزه‌ی پودر شده در محیط زیست است. به همین دلیل تحقیقات عدیده‌ای برای یافتن افزودنی‌هایی از منابع تجدیدپذیر که ماندگار ، ارزان‌تر و دوست‌دار محیط‌زیست باشند، انجام شده است. این مقاله به معرفی یک ماده‌ی جدید به عنوان فعال‌ساز جایگزین در پخت کائوچوی طبیعی پرداخته است. جایگزینی افزودنی‌های پخت متداول با مواد گرفته شده از سلولز، واکنش پخت آمیزه‌های لاستیکی را تغییر می‌دهد که در پی آن ساختار شیمیایی و ریخت‌شناسی فازی آمیزه‌ی‌نهایی دست‌خوش تغییر می‌گردد. این اصلاحات در ساختار آمیزه، چگالی اتصالات عرضی، حداکثر گشتاور، پایداری گرمایی و خواص مکانیکی را نیز تحت تاثیر قرار داده که نتیجه‌ها نویدبخشی را در پی ‌دارد. نتایج مطلوب به‌دست آمده و کاهش چشم‌گیر مقدار روی استفاده شده (74/4%) در آمیزه، در مقایسه با نمونه‌ی استاندارد، احتمال تغییر فعال‌سازهای رایج، مانند اکسیدروی، با یک جایگزین دوست‌دار محیط‌زیست گرفته شده از نیشکر را برجسته می‌سازد.

کلیدواژه‌ها


 

1- Al-hartomy, O.A., Al-ghamdi, A.A., Al-said, S.A.F., Dishovsky, N., 2014. A comparative study of the phase distribution in carbon-silica hybrid fillers for rubber obtained by different methods. Materials Sciences and Applications, v. 5, n. 10, p. 685, 2014685–697.
2- Boeriu, C.G., Bravo, D., Gosselink, R.J.A., Van Dam, J.E.G., 2004. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 20, 205–218.
3- Chan, C.H., Kammer, H.W., Sim, L.H., Karum, M.K., 2013. Blends of epoxidized naturalrubber and thermoplastics, in: Popa, G.A. (Ed.), In: Rubber: Types, properties and use. Nova Science Publishers, Malaysia, 306–336.
4- Coran, A.Y., 1995. Vulcanization: Conventional and dynamic. Rubber Chem. Technol. 68, 351–375.
5- Dall’Antonia, A.C., Martins, M. a., Moreno, R.M.B., Mattoso, L.H.C., Gonçalves, P.S., Job, A.E., 2009. Caracterização mecânica e térmica da borracha natural formulada e vulcanizada dos clones: GT 1, IAN 873, PB 235 e RRIM 600. Polímeros 19, 63–71.
6- Dasgupta, S., Agrawal, S.L., Bandyopadhyay, S.; Mukhopadhyay, R., MalkaniI, R.K., Ameta, S.C., 2008. Characterization of eco-friendly processing aids for rubber compounds: Part II. Polym. Test. 27, 277–238.
7- de Sousa, F.D.B., Scuracchio, C.H., 2012. Vulcanization behavior of NBR with organically modified clay. J. Elastomers Plast. 44, 263–272.
8- de Sousa, F.D.B., Scuracchio, C.H., 2015. The role of carbon black on devulcanization of natural rubber by microwaves 18, 791–797.
9- de Sousa, F.D.B., 2016. Vulcanization of natural rubber: Past, present and future perspectives, in: Hamilton, J.L. (Ed.), Natural rubber: Properties, behavior and applications. Nova Science Publishers, New York, 47–88.
10- de Sousa, F.D.B., Scuracchio, C.H., Hu, G.H., Hoppe, S., 2017a. Devulcanization of waste tire rubber by microwaves. Polym. Degrad. Stab. 138, 169–181.
11- de Sousa, F.D.B., Zanchet, A., Scuracchio, C.H., 2017b. Influence of reversion in compounds containing recycled natural rubber : In search of sustainable processing. J. Appl. Polym. Sci. 134, 45325.
12- Dos Santos, K.A.M., Suarez, P.A.Z., Rubim, J.C., 2005. Photo-degradation of synthetic and natural polyisoprenes at specific UV radiations. Polym. Degrad. Stab. 90, 34–43.
13- Flory, P.J., 1953. Principles of polymer chemistry, Cornel Uni. ed. New York.
14- Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., Gandini, A., Martin, L., Mondragon, I., 2008. Composites based on acylated cellulose fibers and low-density polyethylene: Effect of the fiber content, degree of substitution and fatty acid chain length on final properties. Compos. Sci. Technol. 68, 3358–3364.
15- Garcia, P.S., de Sousa, F.D.B., de Lima, J.A., Cruz, S.A., Scuracchio, C.H., 2015. Devulcanization of ground tire rubber: physical and chemical changes after different microwave exposure times. Express Polym. Lett. 9, 1–21.
16- Gualtieri, M., Andrioletti, M., Vismara, C., Milani, M., Camatini, M., 2005. Toxicity of tire debris leachates. Environ. Int. 31, 723–730.
17- Gujel, A.A., Bandeira, M., Veiga, V.D., Giovanela, M., Carli, L.N., Brandalise, R.N., Crespo, J.S., 2014a. Development of bus body rubber profiles with additives from renewable sources: Part I – Additives characterization and processing and cure properties of elastomeric compositions. Mater. Des. 53, 1112–1118.
18- Gujel, A.A., Bandeira, M., Giovanela, M., Carli, L.N., Brandalise, R.N., Crespo, J.S., 2014b. Development of bus body rubber profiles with additives from renewable sources : Part II – Chemical , physical–mechanical and aging characterization of elastomeric compositions. Mater. Des. 53, 1119–1123.
19- Heideman, G., Noordermeer, J.W.M., Datta, R.N., van Baarle, B., 2006. Various ways to reduce zinc oxide levels in S-SBR rubber compounds. Macromol. Symp 245–246, 657–667.
20- Helaly, F.M., El Sabbagh S.H., El Kinawy, O.S., El Sawy, S.M., 2011. Effect of synthesized zinc stearate on the properties of natural rubber vulcanizates in the absence and presence of some fillers. Mater. Des. 32, 2835 – 2843.
21- Henning, S.K., 2007. Reduced zinc loading: using zinc monomethacrylate to activate accelerated sulfur vulcanization. Cray Valley USA: Cleveland, 2007.
22- Hirayama, D., Saron, C., 2012. Chemical modifications in styrene-butadiene rubber after microwave devulcanization. Ind. Eng. Chem. Res. 51, 3975–3980.
23- Hubbe, A.M., Rojas, O.J., Lucia, L.A., Sain, M., 2008. Cellulosic nanocomposites: a review. BioResources 3, 929–980.
24- Kohjiya, S., Ikeda, Y. (Eds.), 2014. Chemistry, manufacture and applications of natural rubber. Elsevier.
25- Jiang, G., Zhao, S., Li, W., Luo, J., Wang, Y., Zhou, Q., Zhang, C., 2011. Microbial desulfurization of SBR ground rubber by Sphingomonas sp. and its utilization as filler in NR compounds. Polym. Adv. Technol. 22, 2344–2351.
26- Kleps, T., Piaskiewicz, M., Parasiewicz, W., 2000. Use of thermogravimetry in the study of rubber devulcanization. J. Therm. Anal. Calorim. 60, 271–277.
27- Kraus, G., 1963. Swelling of filler-reinforced vulcanizates. J. Appl. Polym. Sci. 7, 861–871.
28- Lenardão, E.J., Freitag, R.A., Dabdoub, M.J., Batista, A.C.F., Silveira, C.C., 2003. “Green chemistry” - Os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Quim. Nova 26, 123–129.
29- Li, F., Hanson, M.V., Larock, R.C., 2001. Soybean oil–divinylbenzene thermosetting polymers: synthesis, structure, properties and their relationships. Polymer. 42, 1567–1579.
30- Mark, J.E., 1999. Polymer data handbook, second ed. Oxford University Press, New York.
31- Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J., 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews. Chem. Soc. Rev. 40, 3941–3994.
32- Moresco, S., Giovanela, M., Carli, L.N., Crespo, J.S., 2015. Development of passenger tire treads: Reduction in zinc content and utilization of a bio-based lubricant. J. Clean. Prod. v. 117, p. 199-206, 2016
33- Nando, G.B., De, S.K., 1980. Effect of lignin on the network structure and properties of natural rubber mixes vulcanized by conventional, semiefficient and efficient vulcanization systems. J. Appl. Polym. Sci. 25, 1249–1252. doi:10.1002/app.1980.070250625
34- Nelson, S.M., Mueller, G., Hemphill, D.C., 1994. Identification of tire leachate toxicants and a risk assessment of water quality effects using tire reefs in canals. Bull. Environ. Contam. Toxicol. 52, 574–581.
35- Pastore, T.C.M., de Oliveira, C.C.K., Rubim, J.C., Santos, K.O., 2008. Effect of artificial weathering on tropical woods monitored by infrared spectroscopy (DRIFT). Quimica Nova, 31(8), 2071-2075.
36- Payne, A.R., 1962. The dynamic properties of carbon black loaded natural rubber vulcanizates. Part II. J. Appl. Polym. Sci. 6, 368–372, 1962.
37- Payne, A.R.; Whittaker, R.E., 1971.Low strain dynamic properties of filled rubbers. Rubber chemistry and technology, 44, n. 2, 440-478, 1971
38- Pysklo, L.; Pawlovski, P.; Parasiewics, W., 2007. Study on reduction of zinc oxide level in rubber compounds part I. KGK-Kautschuk Gummi Kunstsoffe 60, 548–553.
39- des Santos, M.L., de Lima, O.J., Nassar, E.J., Ciuffi, K.J., Calefi, P.S., 2011. Study of the storage conditions of the sugarcane bagasse through thermal analysis. Quim. Nova 34, 507–511.
40- da Silva, E.J., Marques, M.L., Velasco, F.G., Fornari Junior, C.C.M., Luzardo, F.H.M., 2015. Degradação da fibra de coco imersa em soluções alcalinas de cimento e NaOH. Rev. Bras. Eng. Agrícola e Ambient. 19, 981–988.
41- Weber, T., Zanchet, A., Brandalise, R.N., Crespo, J.S., Nunes, R.C.R., 2008. Grinding and Characterization of Scrap Rubbers Powders. J. Elastomers Plast. 40, 147–159.
42- Yu, P., He, H., Jia, Y., Tian, S., Chen, J., Jia, D., Luo, Y., 2016. A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polym. Test. 54, 176–185.
43- Zanchet, A., Weber.T., Carli, L.N., Giovanela, M., Crespo, J.S., Scuracchio, C.H., Nunes, R.C.R., 2009. Characterization of microwave-devulcanized composites of ground SBR scraps. J. Elastomers Plast. 41, 497–507.
44- Zanchet, A., Carli, L.N., Giovanela, M., Brandalise, R.N., Crespo, J.S., 2012. Use of styrene butadiene rubber industrial waste devulcanized by microwave in rubber composites for automotive application. Mater. Des. 39, 437–443.
45- Zanchet, A., Garcia, P.S., Nunes, R.C.R., Crespo, J.S., Scuracchio, C.H., 2016. Sustainable natural rubber compounds : Naphthenic oil exchange for another alternative from renewable source. Int. Ref. J. Eng. Sci. 4, 10–19.