مروری بر سازوکارهای حاکم بر ازکارافتادگی آستر لاستیکی مورد استفاده در استاتور موتورهای درون چاهی

نوع مقاله: مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندس پلیمر، دانشکده مهندسی شیمی دانشگاه تربیت مدرس، تهران، ایران

2 دکترای تخصصی، استادیار، عضو هیئت علمی دانشگاه تربیت مدرس، تهران، ایران

چکیده

بخش تولید توان موتورهای درون‌چاهی شامل یک روتور فلزی و یک استاتور با آستر لاستیکی است که با جریان‌یابی سیال حفاری در بین حفراتی که از اختلاف هندسه روتور و استاتور ایجاد شده‌اند، تبدیل انرژی هیدرولیکی سیال حفاری به انرژی چرخشی روتور و نهایتا چرخش سرمته‌ی حفاری صورت می‌پذیرد. از نقطه‌نظر طراحی، ضروری است آستر لاستیکی در حین تنش‌های عملیاتی، بتواند با حداقل میزان تغییرشکل مکانیکی، آب‌بندی مناسبی بین حفرات مجاور ایجاد کرده تا امکان پیشروی سیال حفاری در راستای روتور بدون گرمااندوزی زیاد در لاستیک ایجاد شود. برای این منظور لزوم استفاده از الاستومری با سفتی بالا برای اجتناب از اعوجاج و تغییر شکل دینامیکی بالا و جهندگی کافی برای ایجاد قابلیت آب‌بندی مناسب وجود دارد. وجود خواص استحکامی بالا و مقاومت در برابر ایجاد و رشد ترک از دیگر ویژگی‌های الاستومر مورد استفاده در این کاربرد است. این نوع موتورها عمدتا از بخش تولید توان و بیش‌تر از ناحیه آستر لاستیکی استاتور دچار ازکارافتادگی می‌شوند. به ‌دلیل فشار و دمای بالای درون چاه، تاثیر شیمی سیال حفاری و قرارگیری تحت بارهای مکانیکی متناوب، این آسترها متحمل انواعی از تخریب حرارتی، تخریب شیمیایی، خستگی حرارتی و خستگی مکانیکی می‌شوند که برطرف کردن ازکارافتادگی آن‌ها بسیار پرهزینه است. مقاله حاضر آخرین دستاوردها در ارزیابی از کارافتادگی الاستومر آستر لاستیکی را مورد تحلیل و بررسی قرار می‌دهد. در آسترهای لاستیکی با ضخامت کم و یکنواخت نسبت به انواع معمولی آن‌ها، میزان تخریب حرارتی برخلاف ازکارافتادگی ناشی از تغییر شکل و بارهای تناوبی مکانیکی تا حد قابل قبولی کاهش یافته‌است.

کلیدواژه‌ها


1. Ma, T., P. Chen, and J. Zhao, Overview on vertical and directional drilling technologies for the exploration and exploitation of deep petroleum resources. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016. 2(4): p. 365-395.
2. Perez, B.L., Downhole motor stator and method of manufacture. 2018, Google Patents.
3. BA, S., et al. Positive Displacement Motor Modeling: Skyrocketing the Way We Design, Select, and Operate Mud Motors. in Abu Dhabi International Petroleum Exhibition & Conference. 2016. Society of Petroleum Engineers.
4. Shi, C., et al., Failure analysis of general stator and uniform wall thickness stator. Engineering Failure Analysis, 2018. 94: p. 239-248.
5. Changshuai, S., C. Yike, and Z. Xiaohua, Applicability evaluation and hysteresis heat effect of rubber constitutive model of PDM stator bushing at high temperature in deep well. Arabian Journal for Science and Engineering, 2019. 44(6): p. 6057-6066.
6. Eppink, J.M., Coupling for a downhole tandem drilling motor. 1997, Google Patents.
7. Zhang, J., Z. Liang, and C. Han, Failure analysis and finite element simulation of key components of PDM. Engineering Failure Analysis, 2014. 45: p. 15-25.
8. BA, S., et al. Combined Data Analytics and Physics-Based Simulation for Optimum Bit, Motor, BHA Combination. in Offshore Technology Conference Brasil. 2019. Offshore Technology Conference.
9. Beeh, H.A., et al. Drilling a Challenging Kvitebjørn Field 5¾-in. Section in a Single Run Using a New Mud Motor Modeling Engineering Workflow and New Long-Life Elastomer. in SPE Norway One Day Seminar. 2018. Society of Petroleum Engineers.
10. Delpassand, M.S., Multiple elastomer layer progressing cavity stators. 2009, Google Patents.
11. Lyons, W.C. and G.J. Plisga, Standard handbook of petroleum and natural gas engineering. 2011: Elsevier.
12. Delpassand, M.S., Stator life of a positive displacement downhole drilling motor. 1999.
13. Izadi, M., M. Tabatabaee Ghomi, and G. Pircheraghi, Mechanical Strength Improvement of Mud Motor’s Elastomer by Nano Clay and Prediction the Working Life via Strain Energy. International Journal of Engineering, 2019. 32(2): p. 338-345.
14. Zhang, J., C. Han, and Z. Liang, Physics of failure analysis of power section assembly for positive displacement motor. Journal of Loss Prevention in the Process Industries, 2016. 44: p. 414-423.
15. Shi, C., et al., Thermal failure of 2/3 PCP in high temperature environment and optimization analysis of stator and rotor meshing parameters. Journal of Loss Prevention in the Process Industries, 2019. 61: p. 174-182.
16. Han, C., J. Zhang, and Z. Liang, Thermal failure of rubber bushing of a positive displacement motor: a study based on thermo-mechanical coupling. Applied thermal engineering, 2014. 67(1-2): p. 489-493.
17. Izadi, M., M.T. Ghomi, and G. Pircheraghi, Increasing the Working Life and Performance Improvements of Down Whole Mud Motors Using Nanocomposite Elastomer. 2019.
18. Izadi, M., M.T. Ghomi, and G. Pircheraghi, Increasing the Working Life and Performance Improvements of Down Whole Mud Motors Using Nanocomposite Elastomer (in persian). 1398.
19. Chen, J., et al., Finite element analysis for adhesive failure of progressive cavity pump with stator of even thickness. Journal of Petroleum Science and Engineering, 2015. 125: p. 146-153.
20. Mars, W. and A. Fatemi, Factors that affect the fatigue life of rubber: a literature survey. Rubber Chemistry and Technology, 2004. 77(3): p. 391-412.
21. Gent, A.N., Engineering With Rubber: How to Design Rubber Components. 2001: Hanser.
22. Alimardani, M., Investigating the Effect of Reinforcing Filler-Polymer Interaction on Viscoelastic and Fatigue Crack Growth of Rubber-Nanosilica Composites. 2017.
23. Shi, C., et al., Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor. Journal of Mechanical Science and Technology, 2017. 31(3): p. 1143-1149.