تجزیه‌وتحلیل بلادرنگ خصوصیات موثر تایر با استفاده از تایرهای هوشمند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای تخصصی، مهندسی مکانیک، مرکز نوآوری گروه صنعتی بارز، تهران، ایران

2 دکترای تخصصی، مهندسی پلیمر، مرکز نوآوری گروه صنعتی بارز، تهران، ایران

چکیده

در چند سال گذشته، توسعه فناوری ایمنی خودرو به‌طور چشم‌گیری تکامل پیدا کرده است. تایرها یکی از اجزای اصلی خودرو در تعیین نحوه عملکرد آن بوده و نقش زیادی در امنیت آن دارند. این اجزا بار خودرو را تحمل کرده و تنها قسمت‌هایی از آن هستند که با زمین تماس دارند. در نتیجه، حاوی اطلاعات مفیدی درباره فشار و دمای تایر، بار چرخ، سایش تایر و تغییر وضعیت جاده هستند. تایرهای هوشمند با ارائه برآوردی از پارامترهای تاثیرگذار بر عملکرد و ایمنی تایر، این پتانسیل را دارند که به‌طور گسترده برای افزایش ایمنی سیستم‌های حمل‌ونقل جاده‌ای مورد استفاده قرار گیرند. از سوی دیگر پررنگ شدن جایگاه امنیت در سطح جهانی و ظهور مفاهیمی مانند اینترنت اشیا، موجب حرکت صنعت تایر به‌سوی تولید تایرهای هوشمند شده است. در این مقاله روند طراحی و ساخت تایر هوشمند در گروه صنعتی بارز تشریح شده است. این تایر سه پارامتر دما، فشار و میزان مسافت طی‌شده را به‌طور مداوم اندازه‌گیری می‌کند. تایر هوشمند بارز شامل سه قسمت اصلی است: مجموعه سنسور که داخل تایر نصب می‌شود، واحد کنترل که داخل کابین خودرو قرار می‌گیرد، و برنامه کاربردی تلفن همراه هوشمند که در واقع راه‌ ارتباطی بین تایر و راننده است.

کلیدواژه‌ها


[1] APOLLO Consortium: Intelligent tyre systems-State of the art and potential technologies (2003). Technical Research Centre of Finland (VTT), APOLLO Deliverable D7 for Project IST-2001–34372.
[2] APOLLO Consortium: Final report including technical implementation plan (annex) (2005). Technical Research Centre of Finland (VTT), APOLLO Deliverable 22/23 for Project IST-2001-34372. 2005.
[3] European Transport Safety Council Road accident data in the enlarged European Union (2006), pp. 1-30.
[4] Makinen, T. and Wunderlich, H. (2002). Intelligent tyre promoting accident-free traffic. In Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems.
[5] Lee, H. and Taheri S (2017). Intelligent tires? A review of tire characterization literature. IEEE Intelligent Transportation Systems Magazine, 9(2), pp. 114-135.
[6] Wang, F.Y., Shan, G.L., Li, L., Wang, Z.Y., and Wang C.Z. (2002). The research of smart tire and correlative core techniques. Tire Industry Sinica, 22(12), pp. 713-719.
[7] Schimetta, G., Dollinger, F., Scholl, G., and Weigel, R. (2000). Wireless pressure and temperature measurement using a SAW hybrid sensor. In 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium, 1, pp. 445-448.
[8] Zhang, X., Wang, F., Wang, Z., Li, W., and He, D. (2004). Intelligent tires based on wireless passive surface acoustic wave sensors. In Proceedings. The 7th International IEEE Conference on Intelligent Transportation System, pp. 960-964.
[9] Braghin F., Brusarosco M., Cheli F.E., Cigada A., Manzoni S., and Mancosu F. (2006). Measurement of contact forces and patch features by means of accelerometers fixed inside the tire to improve future car active control. Vehicle System Dynamics. 44 (1), pp. 3-13.
[10] Moon, K.S., Liang, H., Yi, J. and Mika, B. (2007). Tire tread deformation sensor and energy harvester development for smart-tire applications. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. 6529, p. 65290K.
[11] Matsuzaki, R. and Todoroki, A. (2008). Wireless monitoring of automobile tires for intelligent tires. Sensors, 8(12), pp.8123-8138.
[12] Niskanen, A.J. and Tuononen, A.J. (2014). Three 3-axis accelerometers fixed inside the tyre for studying contact patch deformations in wet conditions. Vehicle System Dynamics, 52 (1), pp.287-298.
[13] Matilainen, M. and Tuononen, A. (2015). Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer. Mechanical Systems and Signal Processing, 52, pp.548-558.
[14] Singh, K.B. and Taheri, S. (2015). Estimation of tire–road friction coefficient and its application in chassis control systems. Systems Science & Control Engineering, 3 (1), pp.39-61.
[15] Hariri, H., Kim, J., Kim, W.S., Frechette, L.G. and Masson, P. )2017(. Performance validation of printed strain sensors for active control of intelligent tires. Applied Acoustics, 123, pp.73-84.
[16] Behroozinia, P., Khaleghian, S., Taheri, S., and Mirzaeifar, R. (2020). An investigation towards intelligent tyres using finite element analysis. International Journal of Pavement Engineering, 21(3), pp.311-321.
[17] Du, R., Qiu, G., Gao, K., Hu, L., and Liu, L. (2020). Abnormal road surface recognition based on smartphone acceleration sensor. Sensors, 20 (2), p.451.
[18] Kim, H.J., Han, J.Y., Lee, S., Kwag, J.R., Kuk, M.G., Han, I.H., and Kim, M.H. (2020). A Road Condition Classification Algorithm for a Tire Acceleration Sensor using an Artificial Neural Network. Electronics, 9 (3), p.404.
[19] Pohl, A., R. Steindl, and L. Reindl, (1999). The intelligent tire utilizing passive SAW sensors measurement of tire friction. IEEE transactions on instrumentation and measurement, 48 (6), Dec, pp. 1041-1046.
[20] Magori, V., Magori, V.R., and Seitz, N. (1998). On-line determination of tyre deformation, a novel sensor principle. in 1998 IEEE Ultrasonics Symposium. Proceedings.
[21] Esmaeeli, R., Aliniagerdroudbari, H., Hashemi, S.R., Nazari, A., Alhadri, M., Zakri, W., Mohammed, A.H., Batur, C. and Farhad, S. (2019). A rainbow piezoelectric energy harvesting system for intelligent tire monitoring applications. Journal of Energy Resources Technology, 141(6).