پارامترهای موثر برروی مدلسازی ضریب نفوذ کوچک‌ملکول‌ها در سیستم‌های دوجزئی پلیمری

نوع مقاله : مقاله مروری

نویسندگان

1 فوق لیسانس دانشگاه مالک اشتر-پژوهشکده کامپوزیت- تهران-ایران

2 عضو هیت علمی پژوهشکده کامپوزیت دانشگاه صنعتی مالک اشتر

3 عضو هیئت علمی پژوهشکده کامپوزیت دانشگاه صنعتی مالک اشتر

10.22034/irm.2022.143827

چکیده

مواد پلیمری به‌طور گسترده در طول عمر کاربری خود در معرض انواع مواد شیمیایی، مورد استفاده قرار می‌گیرند. از‌این‌جهت، مطالعه رفتار نفوذ ملکول‌های حلال از این مواد بسیار حائز اهمیت است. مطالعات صورت گرفته در زمینه نفوذ کوچک‌ملکول‌ها به درون آلیاژهای‌ پلیمری از درک عمیقی برخوردار نیستند. در کامپوزیت‌ها و آلیاژهای پلیمری تغییرات کسرحجمی اجزاء باعث تغییر رفتار انتقال نفوذکننده می‌شود. در آلیاژهای پلیمری با تغییر در کسرحجمی اجزای آلیاژ انتقال فاز بین فاز ماتریس و پرآکنده‌شده اتفاق می‌افتد که می‌تواند باعث تغییر رفتار انتقال ملکول‌های نفوذکننده در اثر تغییرات کسرحجمی آلیاژ شوند. مدل‌های مختلفی برای مدلسازی اثر تغییرات کسرحجمی بر مشخصه‌های انتقال ملکول‌های حلال به درون سیستم‌های دو جزئی پلیمری توسط پژوهشگران مختلف ارائه شده‌است. از میان این مدل‌ها، مدل رابسون و مدل جعبه مدل کلارک(EBM)، کاملترین مدل‌های پیش‌بینی‌کننده رفتار انتقال ملکول‌های حلال به درون کامپوزیت‌ها و آلیاژهای پلیمری هستند. نتایج مطالعات صورت ‌گرفته برروی اختلاف میانگین داده‌های مدلسازی‌شده با داده‌های آزمایشگاهی برای آلیاژ NR/NBR نشان می‌دهد که مدل رابسون با 1.4 درصد کمترین اختلاف را با داده‌های آزمایشگاهی دارد.

کلیدواژه‌ها


  1.  

    1. Al Minnath, M., G. Unnikrishnan, and E. Purushothaman, Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. Journal of Membrane Science, 2011. 379(1-2): p. 361-369.
    2. Campise, F., et al., Contribution of entanglements to polymer network elasticity. Macromolecules, 2017. 50(7): p. 2964-2972.
    3. Abraham, J., et al., Solvent transport characteristics of thermoplastic elastomer blends based on nylon and NBR. Polymer Engineering & Science, 2017. 57(2): p. 231-236.
    4. Nabil, H., H. Ismail, and A. Azura, Compounding, mechanical and morphological properties of carbon-black-filled natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) blends. Polymer Testing, 2013. 32(2): p. 385-393.
    5. Ismail, S.M.R.S., T. Chatterjee, and K. Naskar, Superior heat‐resistant and oil‐resistant blends based on dynamically vulcanized hydrogenated acrylonitrile butadiene rubber and polyamide 12. Polymers for Advanced Technologies, 2017. 28(6): p. 665-678.
    6. Thomas, S., S.C. George, and S. Thomas, Evaluation of mechanical, thermal, electrical, and transport properties of MWCNT‐filled NR/NBR blend composites. Polymer Engineering & Science, 2018. 58(6): p. 961-972.
    7. Fujiyabu, T., et al., Structure-property relationship of a model network containing solvent. Science and technology of advanced materials, 2019. 20(1): p. 608-621.
    8. Padmini, M., et al., Molecular transport of aliphatic hydrocarbons through styrene butadiene rubber/ethylene vinyl acetate blends. Journal of applied polymer science, 2006. 101(5): p. 2884-2897.
    9. Balan, A.K., et al. Transport behavior of aromatic hydrocarbons through coconut shell powder filled thermoplastic polyurethane/natural rubber blend-composites. in AIP Conference Proceedings. AIP Publishing.
    10. Liu, , et al., Quantitative exploration of the swelling response for carbon black filled hydrogenated nitrile rubber with three-dimensional solubility parameters. Polymer Bulletin, 2015. 72(8): p. 1961-1974.
    11. El Afif, A. and M. Grmela, Non-Fickian mass transport in polymers. Journal of Rheology, 2002. 46(3): p. 591-628.
    12. El Aissaoui, A. and A. El Afif, Non-Fickian mass transfer in swelling polymeric non-porous membranes. Journal of Membrane Science, 2017. 543: p. 172-183.
    13. Hairch, Y. and A. El Afif, Modeling Non-Fickian Sorption of a Solvent in Immiscible Polymers. 2020, EasyChair.
    14. Mathai, A.E., R. Singh, and S. Thomas, Transport of substituted benzenes through nitrile rubber/natural rubber blend membranes. Journal of membrane science, 2002. 202(1-2): 35-54.
    15. Obasi, H.C., O. Ogbobe, and I.O. Igwe, Diffusion characteristics of toluene into natural rubber/linear low density polyethylene blends. International Journal of Polymer Science, 2009. 2009.
    16. Abraham, J., et al., Transport characteristics of organic solvents through carbon nanotube filled styrene butadiene rubber nanocomposites: the influence of rubber–filler interaction, the degree of reinforcement and morphology. Physical Chemistry Chemical Physics, 2015. 17(17): p. 11217-11228.
    17. Igwe, I.O. and O.E. Ezeani, Studies on the transport of aromatic solvents through filled natural rubber. International Journal of Polymer Science, 2012. 2012.
    18. Moni, G., et al., Effect of reduced graphene oxide on the solvent transport characteristics and sorption kinetics of fluoroelastomer nanocomposites. Physical Chemistry Chemical Physics, 2018. 20(26): p. 17909-17917.
    19. Ramesan, M., Effects of magnetite nanoparticles on morphology, processability, diffusion and transport behavior of ethylene vinyl acetate nanocomposites. International Journal of Plastics Technology, 2015. 19(2): p. 368-380.
    20. Robeson, L.M., Polymer blends in membrane transport processes. Industrial & engineering chemistry research, 2010. 49(23): p. 11859-11865.
    21. Velioğlu, S., S.B. Tantekin-Ersolmaz, and J.W. Chew, Towards the generalization of membrane structure-property relationship of polyimides and copolyimides: A group contribution study. Journal of Membrane Science, 2017. 543: p. 233-254.
    22. Hasnaoui, H., M. Krea, and D. Roizard, Neural networks for the prediction of polymer permeability to gases. Journal of Membrane Science, 2017. 541: p. 541-549.
    23. Chiou, J. and D.R. Paul, Gas permeation in miscible blends of poly (methyl methacrylate) with bisphenol chloral polycarbonate. Journal of applied polymer science, 1987. 33(8): p. 2935-2953.
    24. Maeda, Y. and D.R. Paul, Selective gas transport in miscible PPO-PS blends. Polymer, 1985. 26(13): p. 2055-2063.
    25. Monsalve-Bravo, G.M. and S.K. Bhatia, Modeling permeation through mixed-matrix membranes: a review. Processes, 2018. 6(9): p. 172.
    26. Prasad, K., M. Nikzad, and I. Sbarski, Modeling Permeability in Multi-Phase Polymer Composites: A Critical Review of Semi-Empirical Approaches. Polymer Reviews, 2020: p. 1-44.
    27. Johnson, T. and S. THOMAS, Sorption, diffusion, and permeation of chlorinated hydrocarbon vapors through natural rubber, epoxidized natural rubber, and their blends. Polymer-Plastics Technology and Engineering, 2000. 39(2): p. 363-380.
    28. Robeson, L.M., et al., Physical property characteristics of polysulfone/poly‐(dimethylsiloxane) block copolymers. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1973. 29(1): p. 47-62.
    29. GilakHakimabadi, S., et al., Controlled-release of ferulic acid from active packaging based on LDPE/EVA blend: Experimental and modeling. Food Packaging and Shelf Life, 2019. 22: p. 100392.
    30. George, S., P. Kumari, and G. Unnikrishnan, Aliphatic Liquid Transport through Heterogeneous EthylenePropylene—Diene Monomer Rubber/Poly (ethylene-co-vinyl acetate) Blends. Journal of Elastomers & Plastics, 2009. 41(1): p. 65-85.
    31. Rahiman, K.H. and G. Unnikrishnan, The behaviour of styrene butadiene rubber/acrylonitrile butadiene rubber blends in the presence of chlorinated hydrocarbons. Journal of Polymer Research, 2006. 13(4): p. 297-314.
    32. Ganesh, B. and G. Unnikrishnan, Cure characteristics, morphology, mechanical properties, and aging characteristics of silicone rubber/ethylene vinyl acetate blends. Journal of applied polymer science, 2006. 99(3): p. 1069-1082.
    33. Jordhamo, G., J. Manson, and L. Sperling, Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Polymer Engineering & Science, 1986. 26(8): p. 517-524.
    34. Kolařík, J., et al., Prediction of the gas permeability of heterogeneous polymer blends. Polymer Engineering & Science, 2000. 40(1): p. 127-131.
    35. Manoj, K., et al., Transport of Aromatic Hydrocarbons through EPDM/NBR Blends. Journal of Elastomers & Plastics, 2011. 43(1): p. 65-84.
    36. Thomas, S. and A. George, Dynamic mechanical properties of thermoplastic elastomers from blends of polypropylene with copolymers of ethylene with vinyl acetate. European polymer journal, 1992. 28(11): p. 1451-1458