خواص لاستیک‌های ضایعاتی در بتن

نوع مقاله: مقاله مروری

نویسندگان

1 کارشناس ارشد، کارشناس تکنولوژی مجتمع صنعتی آرتاویل تایر، تهران، ایران

2 کارشناس ارشد، مدیر کارشناس تکنولوژی مجتمع صنعتی آرتاویل تایر، تهران، ایران

چکیده

تایرهای بازیافتی یکی ازمواردی است که به دلیل افزایش سریع و تحولات مدرن در سراسر جهان باعث مشکلات جدی زیست‌محیطی می‌شود، بنابراین بازیافت ضایعات لاستیکی به شکل مکمل مصالح ساختمانی بسیارسودمند است. در این مقاله منابع ضایعات لاستیکی، کامپوزیت‌های سیمانی به همراه خواص مواد، کاربردها، دوام وقابلیت استفاده آن‌ها مورد بررسی قرارگرفته است. این مطالعه همچنین برنامه‌های کاربردی یکپارچه ازمواد کامپوزیت بتن لاستیکی برای بهبود روش‌های ساخت وساز و تقویت پایداری زیست‌محیطی سازه‌های بتنی را ارایه می‌دهد. جایگزینی دانه‌های بازیافت شده لاستیکی، بتن را سبک کرده، عمروخستگی آن را افزایش داده و خواص پویا، و شکل‌پذیری را بهبود می‌بخشد. بتن با توده لاستیکی بازیافت شده درگرما وسرما عملکرد خوبی دارد و نتایج قابل توجهی درشرایط بحرانی بدست می‌آید. اگرچه بتن لاستیکی به طورکلی ازاستحکام مکانیکی کمی برخوردار است، اضافه کردن مواد افزودنی خاص می‌تواند یک راه حل خوب برای بهبود خواص آن باشد. بررسی بتن‌های لاستیکی به عنوان مواد، در دسترس است اما تحقیقات در مورد اجزای ساختاری بتن لاستیکی باید مورد توجه باشد.

کلیدواژه‌ها


 
[1]S. Raffoul, R. Garcia, D. Escolano-Margarit, M. Guadagnini, I. Hajirasouliha, K. Pilakoutas, Behaviour of unconfined and FRP-confined rubberised concrete in axial compression, Constr. Build. Mater. 147 (2017) 388–397, https://doi.org/10.1016/j.conbuildmat.2017.04.175.
[2] B.S. Thomas, R.C. Gupta, Long term behaviour of cement concrete containing discarded tire rubber, J. Clean. Prod. 102 (2015) 78–87, https://doi.org/ 10.1016/j.jclepro.2015.04.072.
[3] B. Muñoz-Sánchez, M.J. Arévalo-Caballero, M.C. Pacheco-Menor, Influence of acetic acid and calcium hydroxide treatments of rubber waste on the properties of rubberized mortars, Mater. Struct. 50 (2017) 75, https://doi. org/10.1617/s11527-016-0912-7.
[4] S. Kaewunruen, D. Li, Y. Chen, Z. Xiang, Enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber, Materials (Basel) 11 (2018) 1169, https://doi.org/10.3390/ma11071169.
[5] Global Tire Recycling Market Share, Size, Trends Analysis | Forecast 2024, (n.d.). https://www.goldsteinresearch.com/report/global-tire-recycling-industrymarket- trends-analysis (accessed April 8, 2019).
[6] U.S. Tire Manufacturers Association | The national trade association for tire manufacturers that make tires in the U.S., (n.d.). https://www.ustires.org/ (accessed April 8, 2019).
[7] Interesting statistics on the destination of old tyres in Australia, (n.d.). https:// www.gdtc6.com/statistics-old-tyres-in-australia/ (accessed April 8, 2019).
[8] ETRMA’s statistics on scrap tire collection and recycling in Europe, (n.d.). https://weibold.com/etrmas-statistics-on-scrap-tire-collection-andrecycling- in-europe/ (accessed April 8, 2019).
[9] Z. Zhang, H. Ma, S. Qian, Investigation on properties of ECC incorporating crumb rubber of different sizes, J. Adv. Concr. Technol. 13 (2015) 241–251, https://doi.org/10.3151/jact.13.241.
[10] F. Azevedo, F. Pacheco-Torgal, C. Jesus, J.L. Barroso de Aguiar, A.F. Camões, Properties and durability of HPC with tyre rubber wastes, Constr. Build. Mater. 34 (2012) 186–191, https://doi.org/10.1016/j.conbuildmat. 2012.02.062.
[11] R. Pacheco-Torres, E. Cerro-Prada, F. Escolano, F. Varela, Fatigue performance of waste rubber concrete for rigid road pavements, Constr. Build. Mater. 176(2018) 539–548, https://doi.org/10.1016/j.conbuildmat.2018.05.030.
[12] P. Asutkar, S.B. Shinde, R. Patel, Study on the behaviour of rubber aggregates concrete beams using analytical approach, Eng. Sci. Technol. an Int. J. 20 (2017) 151–159, https://doi.org/10.1016/j.jestch.2016.07.007.
[13]N.N. Gerges, C.A. Issa, S.A. Fawaz, Rubber concrete: Mechanical and dynamical properties, Case Stud. Constr. Mater. 9 (2018), https://doi.org/10.1016/j.cscm.2018.e00184 e00184
[14] M.S. Senin, S. Shahidan, S.R. Abdullah, N.A. Guntor, A.S. Leman, A review on the suitability of rubberized concrete for concrete bridge decks, IOP Conf. Ser. Mater. Sci. Eng. 271 (2017), https://doi.org/10.1088/1757-899X/271/1/ 012074 012074.
[15] A. Grinys, H. Sivilevicˇius, M. Daukšys, Tyre rubber additive effect on concrete mixture strength, J. Civ. Eng. Manag. 18 (2012) 393–401, https://doi.org/ 10.3846/13923730.2012.693536.
[16] A.S. Hameed, A.P. Shashikala, Suitability of rubber concrete for railway sleepers, Perspect. Sci. 8 (2016) 32–35, https://doi.org/10.1016/j.pisc. 2016.01.011.
[17] F. Xiao, P.E. Wenbin Zhao, S.N. Amirkhanian, Fatigue behavior of rubberized asphalt concrete mixtures containing warm asphalt additives, Constr. Build. Mater. 23 (2009) 3144–3151, https://doi.org/10.1016/j.conbuildmat. 2009.06.036.
[18] D. Li, Y. Zhuge, R. Gravina, J.E. Mills, Compressive stress strain behavior of crumb rubber concrete (CRC) and application in reinforced CRC slab, Constr. Build. Mater. 166 (2018) 745–759, https://doi.org/10.1016/ j.conbuildmat.2018.01.142.
[19] A. Moustafa, M.A. ElGawady, Strain rate effect on properties of rubberized concrete confined with glass fiber-reinforced polymers, J. Compos. Constr. 20 (2016) 04016014, https://doi.org/10.1061/(ASCE)CC.1943-5614.0000658.
[20] T. Gonen, Freezing-thawing and impact resistance of concretes containing waste crumb rubbers, Constr. Build. Mater. 177 (2018) 436–442, https://doi. org/10.1016/j.conbuildmat.2018.05.105.
[21]R. Si, J. Wang, S. Guo, Q. Dai, S. Han, Evaluation of laboratory performance of self-consolidating concrete with recycled tire rubber, J. Clean. Prod. 180831, 823–(2018) https://doi.org/10.1016/j.jclepro.2018.01.180.
[22]G. Li, S.-S. Pang, S.I. Ibekwe, FRP tube encased rubberized concrete cylinders, Mater. Struct. 44 (2011) 233–243, https://doi.org/10.1617/s11527-010-9622-8.
[23]B.S. Thomas, R. Chandra Gupta, Properties of high strength concrete containing scrap tire rubber, J. Clean. Prod. 113 (2016) 86–92, https://doi. org/10.1016/j.jclepro.2015.11.019.
[24]K.B. Najim, M.R. Hall, A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberised concrete (SCRC), Constr. Build. Mater. 24 (2010) 2043–2051, https://doi.org/10.1016/ j.conbuildmat.2010.04.056.
[25]T.M. Pham, X. Zhang, M. Elchalakani, A. Karrech, H. Hao, A. Ryan, Dynamic response of rubberized concrete columns with and without FRP confinement subjected to lateral impact, Constr. Build. Mater. 186 (2018) 207–218, https:// doi.org/10.1016/j.conbuildmat.2018.07.146.
[26] M. Gesog˘lu, E. Güneyisi, G. Khoshnaw, S. _Ipek, Investigating properties of pervious concretes containing waste tire rubbers, Constr. Build. Mater. 63 (2014) 206–213, https://doi.org/10.1016/j.conbuildmat.2014.04.046.
[27] _I.B. Topçu, A. Demir, Durability of Rubberized Mortar and Concrete, J. Mater. Civ. Eng. 19 (2007) 173–178, https://doi.org/10.1061/(ASCE)0899-1561 (2007) 19:2(173).
_ [28] I.B. Topçu, A. Unverdi, Scrap tires/crumb rubber, in: Waste Suppl. Cem. Mater. Concr., Elsevier, 2018, pp. 51–77, https://doi.org/10.1016/B978-0-08-102156-9.00002-X.
[29]Krishna C. Baranwal, Akron rubber development laboratory, astm standards &testing of recycle rubber, in: Rubber Div. Meet. Am. Chem. Soc., San Francisco, California, 2003.
[30]L. Li, S. Ruan, L. Zeng, Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles, Constr. Build. Mater. 70 (2014) 291–308, https://doi.org/10.1016/j.conbuildmat. 2014.07.105.
[31]P. Sukontasukkul, Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel, Constr. Build. Mater. 23 (2009) 1084–1092, https://doi.org/10.1016/j.conbuildmat.2008.05.021.
[32]S. Herrero, P. Mayor, F. Hernández-Olivares, Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars, Mater. Des. 47 633–642, https://doi.org/10.1016/j.matdes.2012.12.063. (2013)
[33]S. Ramarad, M. Khalid, C.T. Ratnam, A.L. Chuah, W. Rashmi, Waste tire rubber in polymer blends: A review on the evolution, properties and future, Prog. Mater. Sci. 72 (2015) 100–140, https://doi.org/10.1016/j.pmatsci. 2015.02.004.
[34]A. Caggiano, H. Xargay, P. Folino, E. Martinelli, Experimental and numerical characterization of the bond behavior of steel fibers recovered from waste tires embedded in cementitious matrices, Cem. Concr. Compos. 62 146–155, https://doi.org/10.1016/j.cemconcomp.2015.04.015. (2015)
[35]M.A. Aiello, F. Leuzzi, G. Centonze, A. Maffezzoli, Use of steel fibres recovered from waste tyres as reinforcement in concrete: Pull-out behaviour, compressive and flexural strength, Waste Manag. 29 (2009) 1960–1970, https://doi.org/10.1016/j.wasman.2008.12.002.
[36] A.G. Graeff, K. Pilakoutas, K. Neocleous, M.V.N.N. Peres, Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres, Eng. Struct. 45 (2012) 385–395, https://doi.org/10.1016/j.engstruct.2012.06.030.
[37] Eldan Recycling A/S Værkmestervej 4 – 5600 Faaborg, Denmark, (2018). http://www.eldan-recycling.com.
[38] E. Ganjian, M. Khorami, A.A. Maghsoudi, Scrap-tyre-rubber replacement for aggregate and filler in concrete, Constr. Build. Mater. 23 (2009) 1828–1836, https://doi.org/10.1016/j.conbuildmat.2008.09.020.
[39]O. López-Zaldívar, R. Lozano-Díez, S. Herrero del Cura, P. Mayor-Lobo, F. Hernández-Olivares, Effects of water absorption on the microstructure of plaster with end-of-life tire rubber mortars, Constr. Build. Mater. 150 558–567, (2017) https://doi.org/10.1016/j.conbuildmat.2017.06.014.
[40]T. Wang, F. Xiao, S. Amirkhanian, W. Huang, M. Zheng, A review on low temperature performances of rubberized asphalt materials, Constr. Build. Mater. 145 (2017) 483–505, https://doi.org/10.1016/j.conbuildmat. 2017.04.031.
[41] O. Youssf, R. Hassanli, J.E. Mills, Retrofitting square columns using FRPconfined crumb rubber concrete to improve confinement efficiency, Constr. Build. Mater. 153 (2017) 146–156, https://doi.org/10.1016/ j.conbuildmat.2017.07.108.
[42] K.B. Najim, M.R. Hall, Mechanical and dynamic properties of self-compacting crumb rubber modified concrete, Constr. Build. Mater. 27 (2012) 521–530, https://doi.org/10.1016/j.conbuildmat.2011.07.013.
[43]F. Aslani, G. Ma, D.L. Yim Wan, V.X. Tran Le, Experimental investigation into rubber granules and their effects on the fresh and hardened properties of selfcompacting concrete, J. Clean. Prod. 172 (2018) 1835–1847, https://doi.org/10.1016/j.jclepro.2017.12.003.
[44] A.F. Angelin, F.M. Da Silva, L.A.G. Barbosa, R.C.C. Lintz, M.A.G. De Carvalho, R. A.S. Franco, Voids identification in rubberized mortar digital images using KMeans and Watershed algorithms, J. Clean. Prod. 164 (2017) 455–464, https://doi.org/10.1016/j.jclepro.2017.06.202.
[45] A.C. Corredor-Bedoya, R.A. Zoppi, A.L. Serpa, Composites of scrap tire rubber particles and adhesive mortar – Noise insulation potential, Cem. Concr. Compos. 82 (2017) 45–66, https://doi.org/10.1016/j.cemconcomp2017.05.007.
[46] O. Onuaguluchi, Effects of surface pre-coating and silica fume on crumb rubber-cement matrix interface and cement mortar properties, J. Clean. Prod. 104 (2015) 339–345, https://doi.org/10.1016/j.jclepro.2015.04.116.
[47] F.N.A. Abd, S.M. Aziz, N.A.M. Bida, M.S. Jaafar Nasir, Mechanical properties of lightweight mortar modified with oil palm fruit fibre and tire crumb, Constr. Build. Mater. 73 (2014) 544–550, https://doi.org/10.1016/ j.conbuildmat.2014.09.100.
[48]R. Di Mundo, A. Petrella, M. Notarnicola, Surface and bulk hydrophobic cement composites by tyre rubber addition, Constr. Build. Mater. 172 (2018) 176–184, https://doi.org/10.1016/j.conbuildmat.2018.03.233.
[49] N. Oikonomou, S. Mavridou, Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tires, Cem. Concr. Compos. 31 (2009) 403–407, https://doi.org/10.1016/j. cemconcomp.2009.04.004.
[50]R. Si, S. Guo, Q. Dai, Durability performance of rubberized mortar and concrete with NaOH-Solution treated rubber particles, Constr. Build. Mater. 153 (2017) 496–505, https://doi.org/10.1016/j.conbuildmat.2017.07.085.
[51] V. Corinaldesi, J. Donnini, Waste rubber aggregates, in: New Trends Eco- Efficient Recycl. Concr., Elsevier, 2019, pp. 87–119, https://doi.org/10.1016/ B978-0-08-102480-5.00004-X.
[52] A.A. Gheni, M.A. ElGawady, J.J. Myers, Mechanical characterization of concrete masonry units manufactured with crumb rubber aggregate, ACI Mater. J. 114 (2017) 65–76, https://doi.org/10.14359/51689482.
[53] H. Su, J. Yang, T.-C. Ling, G.S. Ghataora, S. Dirar, Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes, J. Clean. Prod. 91 (2015) 288–296, https://doi.org/10.1016/j.jclepro. 2014.12.022.
[54] M.K. Batayneh, I. Marie, I. Asi, Promoting the use of crumb rubber concrete in developing countries, Waste Manag. 28 (2008) 2171–2176, https://doi.org/ 10.1016/j.wasman.2007.09.035.
[55] M. Bravo, J. de Brito, Concrete made with used tyre aggregate: durabilityrelated performance, J. Clean. Prod. 25 (2012) 42–50, https://doi.org/10.1016/ j.jclepro.2011.11.066.
[56] M. Gesog˘lu, E. Güneyisi, Strength development and chloride penetration in rubberized concretes with and without silica fume, Mater. Struct. 40 (2007) 953–964, https://doi.org/10.1617/s11527-007-9279-0.
[57] F. Aslani, M. Khan, Properties of high-performance self-compacting rubberized concrete exposed to high temperatures, J. Mater. Civ. Eng. 31 (2019) 04019040, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002672.
[58] O. Onuaguluchi, D.K. Panesar, Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume, J. Clean. Prod. 82 (2014) 125–131, https://doi.org/10.1016/j.jclepro.2014.06.068.
[59] R. Abendeh, H.S. Ahmad, Y.M. Hunaiti, Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber, J. Constr. Steel Res. 122 (2016) 251–260, https://doi.org/10.1016/j.jcsr.2016.03.022.
[60] R. Hassanli, J.E. Mills, D. Li, T. Benn, Experimental and numerical study on the behavior of rubberized concrete, Adv. Civ. Eng. Mater. 6 (2017) 20160026, https://doi.org/10.1520/ACEM20160026.
[61] E. Güneyisi, M. Gesoglu, N. Naji, S. _Ipek, Evaluation of the rheological behavior of fresh self-compacting rubberized concrete by using the Herschel-Bulkley and modified Bingham models, Arch. Civ. Mech. Eng. 16 (2016) 9–19, https:// doi.org/10.1016/j.acme.2015.09.003.
[62] E. Güneyisi, Fresh properties of self-compacting rubberized concrete incorporated with fly ash, Mater. Struct. 43 (2010) 1037–1048, https://doi. org/10.1617/s11527-009-9564-1.
[63] M. Adamu, Effect of crumb rubber and nano silica on the creep and drying shrinkage of roller compacted concrete pavement, Int. J. Geomate. 15 (2018), https://doi.org/10.21660/2018.47.22082.
[64]D.V. Bompa, A.Y. Elghazouli, Creep properties of recycled tyre rubber concrete, Constr. Build. Mater. 209 (2019) 126–134, https://doi.org/ 10.1016/j.conbuildmat.2019.03.127.
[65] F. Aslani, Mechanical properties of waste tire rubber concrete, J. Mater. Civ. Eng. 28 (2016) 04015152, https://doi.org/10.1061/(ASCE)MT.1943- 5533.0001429.
[66] A.P.C. Duarte, B.A. Silva, N. Silvestre, J. de Brito, E. Júlio, J.M. Castro, Tests and design of short steel tubes filled with rubberised concrete, Eng. Struct. 112 (2016) 274–286, https://doi.org/10.1016/j.engstruct.2016.01.018.
[67] M.M. Reda Taha, A.S. El-Dieb, M.A. Abd El-Wahab, M.E. Abdel-Hameed, Mechanical, fracture, and microstructural investigations of rubber concrete, J. Mater. Civ. Eng. 20 (2008) 640–649, https://doi.org/10.1061/(ASCE)0899- 1561(2008)20:10(640).
[68] T. Gupta, S. Chaudhary, R.K. Sharma, Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate, Constr. Build. Mater. 73 (2014) 562–574, https://doi.org/10.1016/j.conbuildmat. 2014.09.102.
[69] M. Gesoglu, E. Güneyisi, O. Hansu, S. _Ipek, D.S. Asaad, Influence of waste rubber utilization on the fracture and steel–concrete bond strength properties of concrete, Constr. Build. Mater. 101 (2015) 1113–1121, https:// doi.org/10.1016/j.conbuildmat.2015.10.030.
[70] M. Turki, I. Zarrad, E. Bretagne, M. Quéneudec, Influence of filler addition on mechanical behavior of cementitious mortar-rubber aggregates: experimental study and modeling, J. Mater. Civ. Eng. 24 (2012) 1350–1358, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000512.
[71] J.O. Akinyele, R.W. Salim, W.K. Kupolati, The impact of rubber crumb on the mechanical and chemical properties of concrete, Eng. Struct. Technol. 7 (2016) 197–204, https://doi.org/10.3846/2029882X.2016.1152169.
[72] A. Sofi, Effect of waste tyre rubber on mechanical and durability properties of concrete – A review, Ain Shams Eng. J. (2017) 1–10, https://doi.org/10.1016/j. asej.2017.08.007.
[73] J. Xie, C. Fang, Z. Lu, Z. Li, L. Li, Effects of the addition of silica fume and rubber particles on the compressive behaviour of recycled aggregate concrete with steel fibres, J. Clean. Prod. 197 (2018) 656–667, https://doi.org/10.1016/j. jclepro.2018.06.237.
[74] A.A. Gheni, M.A. ElGawady, J.J. Myers, Mechanical characterization of concrete masonry units manufactured with crumb rubber aggregate, ACI Mater. J. 114 (2017) 65–76, https://doi.org/10.14359/51689482.
[75] P. Sugapriya, R. Ramkrishnan, Crumb rubber recycling in enhancing damping properties of concrete, IOP Conf. Ser. Mater. Sci. Eng. 310 (2018), https://doi. org/10.1088/1757-899X/310/1/012013 012013.
[76] R. Meesit, S. Kaewunruen, Vibration characteristics of micro-engineered crumb rubber concrete for railway sleeper applications, J. Adv. Concr. Technol. 15 (2017) 55–66, https://doi.org/10.3151/jact.15.55.
[77] A. Nadal Gisbert, J.M. Gadea Borrell, F. Parres García, E. Juliá Sanchis, J.E. Crespo Amorós, J. Segura Alcaraz, F. Salas Vicente, Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar, Constr. Build. Mater. 50 (2014) 671–682, https://doi.org/ 10.1016/j.conbuildmat.2013.10.018.
[78] A. Moustafa, M. ElGawady, Dynamic properties of high strength rubberized concrete, ACI Spec. Publ. (2017) 1–22.
[79] Q.-H. Han, G. Yang, J. Xu, Experimental study on the relationship between acoustic emission energy and fracture energy of crumb rubber concrete, Struct. Control Heal. Monit. 25 (2018), https://doi.org/10.1002/stc.2240 e2240.
[80] O. Youssf, M.A. ElGawady, J.E. Mills, Experimental investigation of crumb rubber concrete columns under seismic loading, Structures 3 (2015) 13–27, https://doi.org/10.1016/j.istruc.2015.02.005.
[81] A.M. Marques, J.R. Correia, J. de Brito, Post-fire residual mechanical properties of concrete made with recycled rubber aggregate, Fire Saf. J. 58 (2013) 49–57, https://doi.org/10.1016/j.firesaf.2013.02.002.
[82] F. Hernández-Olivares, G. Barluenga, Fire performance of recycled rubberfilled high-strength concrete, Cem. Concr. Res. 34 (2004) 109–117, https:// doi.org/10.1016/S0008-8846(03)00253-9.