بررسی روغن پالم اپوکسید شده به عنوان کمک فرایند و فعال‌کننده‌ی سبز در آمیزه‌های لاستیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی پلیمر- دانشگاه تهران، شرکت ایران یاسا، تهران، ایران

2 دانشجوی کارشناسی مهندسی شیمی- دانشگاه صنعتی شاهرود، شرکت ایران یاسا، تهران، ایران

چکیده

روغن پالم اپوکسید شده (EPO) کمک فرایندی سازگار با محیط‌زیست، زیست تخریب‌پذیر و به‌نسبت مقرون به‌صرفه است. در این مطالعه، جایگزینی EPO با روغن آروماتیک (AO)، روغن استخراج شده‌ی آروماتیک تقطیر شده‌ی اصلاح شده (TDAE) و روغن پالم اصلاح‌نشده (PO) در کائوچوی استایرن بوتادی‌ان (SBR) بررسی‌شده است. مشخصات پخت، خواص مکانیکی، مقاومت سایشی و خواص گرمازایی آمیزه حاوی EPO با نمونه‌های استاندارد حاوی روغن‌های آروماتیک مقایسه شد. آمیزه‌های لاستیکی حاوی EPO، بهبود خواص مکانیکی شامل مدول، استحکام کششی و ازدیاد طول در نقطه پارگی از خود نشان دادند. این اتفاق به بهبود پراکنش پرکننده‌ها در بستر کائوچو و برهم‌کنش بین پرکننده و کائوچو برمی‌گردد. افزون‌بر این، استفاده از EPO در مقادیر کم باعث مقاومت سایشی، جهندگی و گرمازایی قابل‌توجهی می‌شود. EPO در آمیزه‌های لاستیکی به‌عنوان یک ماده اولیه تجدیدپذیر است که می‌تواند جایگزین روغن‌های نفتی در کاربردهای مختلف شود. این پژوهش، مسیر جدیدی را برای آمیزه‌های لاستیکی با عملکرد عالی در مصارف مهندسی گوناگون باز می‌کند.

کلیدواژه‌ها


1. M. J. Wang, H. Y. Gong, and G. Z. Xue, Handbook of Rubber Industry, Chemical Industry Press, 2nd edition, 1989.
2. R. Faez and M.-A. de Paoli, “Elastic polyaniline with EPDM and dodecylbenzenesulfonic acid as plasticizers,” Journal of Applied Polymer Science, vol. 82, no. 7, pp. 1768–1775, 2001.
3. G. Wypych, Handbook of Plasticizers, Chem Tec Publishing, Canada, 2004.
4. J. W. ten Brinke, S. C. Debnath, L. A. E. M. Reuvekamp, and J. W. M. Noordermeer, “Mechanistic aspects of the role of coupling agents in silica-rubber composites,” Composites Science and Technology, vol. 63, no. 8, pp. 1165–1174, 2003.
5. S. Dasgupta, S. L. Agrawal, S. Bandyopadhyay et al., “Characterization of eco-friendly processing aids for rubber compound,” Polymer Testing, vol. 26, no. 4, pp. 489–500, 2007.
6. L. G. Parks, J. S. Ostby, C. R. Lambright et al., “The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat,” Toxicological Sciences, vol. 58, no. 2, pp. 339–349, 2000.
7. M. Rahman and C. S. Brazel, “Review: an assessment of traditional plasticizers and research trends for development of novel plasticizers,” Progress in Polymer Science, vol. 29, no. 12, pp. 1223–1248, 2004.
8. S. Dasgupta, S. L. Agrawal, S. Bandyopadhyay, R. Mukhopadhyay, R. K. Malkani, and S. C. Ameta, “Improved polymer–filler interaction with an ecofriendly processing aid. Part 1,” Progress in Rubber, Plastics and Recycling Technology, vol. 25, no. 3, pp. 141–164, 2009.
9. A. P. Kuriakose and M. Varghese, “Use of rice bran oil and epoxidized rice bran oil in carbon black-filled natural rubber polychloroprene blends,” Journal of Applied Polymer Science, vol. 90, no. 14, pp. 4084–4092, 2003.
10. J. Xu, Z. Liu, S. Z. Erhan, and C. J. Carriere, “A potential biodegradable rubber—viscoelastic properties of a soybean oil-based composite,” Journal of the American Oil Chemists’ Society, vol. 79, no. 6, pp. 593–596, 2002.
11. H. Miyagawa, R. J. Jurek, A. K. Mohanty, M. Misra, and L. T. Drzal, “Biobased epoxy/clay nanocomposites as a new matrix for CFRP,” Composites Part A: Applied Science and Manufacturing, vol. 37, no. 1, pp. 54–62, 2006.
12. I. Hilker, D. Bothe, J. Prüss, and H. J. Warnecke, “Chemo-enzymatic epoxidation of unsaturated plant oils,” Chemical Engineering Science, vol. 56, no. 2, pp. 427–432, 2001.
13. B. Lin, L. Yang, H. Dai, and A. Yi, “Kinetic studies on oxirane cleavage of epoxidized soybean oil by methanol and characterization of polyols,” Journal of the American Oil Chemists’ Society, vol. 85, no. 2, pp. 113–117, 2008.
14. W. He, Z. Fang, D. Ji et al., “Epoxidation of soybean oil by continuous micro-flow system with continuous separation,” Organic Process Research & Development, vol. 17, no. 9, pp. 1137–1141, 2013.
15. M. Jacob, S. Thomas, and K. T. Varughese, “Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites,” Composites Science and Technology, vol. 64, no. 7-8, pp. 955–965, 2004.
16. M. Rüsch gen. Klaas and S. Warwel, “Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis,” Industrial Crops and Products, vol. 9, no. 2, pp. 125–132, 1999.
17. W. D. W. Rosli, R. N. Kumar, S. M. Zah, and M. M. Hilmi, “UV radiation curing of epoxidized palm oil-cycloaliphatic diepoxide system induced by cationic photoinitiators for surface coatings,” European Polymer Journal, vol. 39, no. 3, pp. 593–600, 2003.
18. W. G. D. Jayewardhana, G. M. Perera, D. G. Edirisinghe, and L. Karunanayake, “Study on natural oils as alternative processing aids and activators in carbon black filled natural rubber,” Journal of the National Science Foundation of Sri Lanka, vol. 37, no. 3, pp. 187–193, 2009.
19. S. H. Song, “The effect of palm oil-based hybrid oils as green multifunctional oils on the properties of elastomer composites,” Polymers, vol. 10, no. 9, pp. 1045–1054, 2018.
20. G. Chandrasekara, M. K. Mahanama, D. G. Edirisinghe, and L. Karunanayake, “Epoxidized vegetable oils as processing aids and activators in carbon-black filled natural rubber compounds,” Journal of the National Science Foundation of Sri Lanka, vol. 39, no. 3, pp. 243–250, 2011.
21. S. H. Song, “Synergistic effect of clay platelets and carbon nanotubes in styrene–butadiene rubber nanocomposites,” Macromolecular Chemistry and Physics, vol. 217, no. 23, pp. 2617–2625, 2017.
22. O.-S. Kwon, D. Lee, S. P. Lee, Y. G. Kang, N. C. Kim, and S. H. Song, “Enhancing the mechanical and thermal properties of boron nitride nanoplatelets/elastomer nanocomposites by latex mixing,” RSC Advances, vol. 6, no. 65, pp. 59970–59975, 2016.
23. S. H. Song, J. M. Kim, K. H. Park et al., “High performance graphene embedded rubber composites,” RSC Advances, vol. 5, no. 99, pp. 81707–81712, 2015.
24. S. H. Song, H. K. Jeong, and Y. G. Kang, “Preparation and characterization of exfoliated graphite and Its styrene butadiene rubber nanocomposites,” Journal of Industrial and Engineering Chemistry, vol. 16, no. 6, pp. 1059–1065, 2010.
25. K. P. Menard and N. R. Menard, “Dynamic mechanical analysis in the analysis of polymers and rubbers,” Encyclopedia of Polymer Science and Technology, no. 42, pp. 1–33, 2015.
26. S. H. Song, K. H. Park, B. H. Kim et al., “Enhanced thermal conductivity of epoxy–graphene composites by using non-oxidized graphene flakes with non-covalent functionalization,” Advanced Materials, vol. 25, no. 5, pp. 732–737, 2013.
27. M. Piton and A. Rivaton, “Photo-oxidation of ABS at long wavelengths (λ > 300 nm),” Polymer Degradation and Stability, vol. 55, no. 2, pp. 147–157, 1997.
28. F. Delor, J. Lacoste, J. Lemaire, N. Barrois-Oudin, and C. Cardinet, “Photo- and thermal ageing of polychloroprene: effect of carbon black and crosslinking,” Polymer Degradation and Stability, vol. 53, no. 3, pp. 361–369, 1996.
29. J. A. Bousquet and J. P. Fouassier, “Photo-oxidation of a random styrene-butadiene copolymer: role of hydroperoxides and behaviour of butenyl segments,” European Polymer Journal, vol. 23, no. 5, pp. 367–376, 1987.
30. C. Adam, J. Lacoste, and J. Lemaire, “Photo-oxidation of elastomeric materials: part II–photo-oxidation of styrene-butadiene copolymer,” Polymer Degradation and Stability, vol. 26, no. 3, pp. 269–284, 1989.
31. T. M. Arantes, K. V. Leao, M. I. B. Tavares, A. G. Ferreira, E. Longo, and E. R. Camargo, “NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites,” Polymer Testing, vol. 28, no. 5, pp. 490–494, 2009.