راهکاری به منظور تشخیص وجود حباب در لاستیک خودرو در تصاویر رادیو گرافی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی گروه مهندسی برق، دانشگاه آزاد اسلامی استان بوشهر، مدیر پژوهش و فناوری

2 دکترای تخصصی مهندسی برق، گروه مهندسی برق، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

3 دکترای تخصصی مهندسی برق، گروه مهندسی برق، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

اطمینان از تولید تایرهای بدون عیب امری مهم در صنعت تولید تایر می باشد. تست x-ray یکی از مهمترین تست‌ها جهت آشکارسازی عیوبی است که توسط چشم انسان قابل تشخیص نیست. با توجه به اینکه بررسی تصاویر x-ray توسط اپراتور فرایندی زمان‌گیر و هزینه‌بر است لذا استفاده از بینایی ماشین و یادگیری ماشین امری مهم در این صنعت به شمار می‌رود. در این مقاله راهکاری جدید به منظور تشخیص عیوب تایر در تصاویر x-ray بر اساس تکنیک‌های پردازش تصویر جهت استخراج ویژگی‌های بافتی از تصویر ارائه شده است. در روش پیشنهادی، ابتدا تصویر هموارسازی می‌شود. سپس فیلتر گوسی و میانه مورد استفاده قرار گرفت تا یک تصویر جدید که در آن ناهمگونی در الگوهای تصویر وردی نشان داده می‌شود، تولید شود و در ادامه برای آشکارسازی این نوع عیوب از ویژگی‌های ساختارشناسانه و انتقال فضا استفاده شده است. با اعمال تبدیل فوریه سریع دوبعدی و بررسی نواحی موجود در تصویر، عیب تشخیص داده می‌شود. به منظور ارزیابی راهکار پیشنهادی مجموعه دادگان تایر با تصاویر x-ray تهیه شد که با اعمال الگوریتم پیشنهادی بر روی این مجموعه دقت خوبی در تشخیص و بازشناسی نوع عیب به دست آمد. دقت به دست آمده نشان می‌دهد که الگوریتم پیشنهادی از کارآیی بالایی در مرحله تشخیص عیب برخوردار است. 

کلیدواژه‌ها


 
[1] 1. F. Feng Xia, X-ray Tire Defects Automatic Detection System (Master dissertation of Tianjin University, china, 2008).
2. A. Kumar, “Computer Vision-based Fabric Defect Detection: A Survey,” IEEE transactions on industrial electronics 55 (1), 348-363 (2008).
3. Y. Zhang, T. Li, and Q. L. Li, “Defect detection for tire laser shearography image using curvelet transform based edge detector,” Optics & Laser Technology 47, 64–71 (2015).
4. X. Xiong, W. He, and H. Wang, “Digital image correlation method (DICM) application in speckle phase-shift of shear speckle defect detection,” in Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, China, Dec 6–8, 2010, pp. 380–383.
5. C. H. Chien, Y. D. Wu, Y. C. Chen, C. C. Hsieh, T. Chen, and Y. T. Chiou, “Quantitative detection of internal defects in automotive tires by an interferographic technique,” Research in Nondestructive Evaluation 18 (3), 163–177 (2007).
6. Y. Zhang, T. Li, and Q. L. Li, “Detection of foreign bodies and bubble defects in tire X-ray images based on total variation and edge detection,” Chinese Physics Letters 30 (8), Art. ID 084205 (2013).
7. M. K. Ng, H. Y. T. Ngan, X. Yuan, and W. Zhang, “Patterned fabric inspection and visualization by the method of image decomposition,” IEEE Transactions on Automation Science and Engineering 11 (3), 943–947 (2014).
8. F. Y. Li, “The study of an improved fuzzy edge detection algorithm in the radial tire quality detection,” In Advanced Materials Research 317, 968–971 (2011).
9. A. Gayer and A. Saya, “The use of X-radiography and computer soft-ware for detecting defects during the manufacture of steel-belt tyres,” NDT International 21 (5), 333–336 (1988).
10. D. Tsai and C. Chiang, “Automatic band selection for wavelet reconstruction in the application of defect detection,” Image and Vision Computing. 21 (5), 413–431 (2003).
11. Y. Zhang, X. Cui Y. Liu and B. Yu, “Tire Defects Classification Using Convolution Architecture for Fast Feature Embedding”, International Journal of Intelligence System, Vol. 11, pp 1056-1066, 2018.
12. Y. Zhu, W. Y. Liu, F. C. Liu, and J. J. Wang, “Inspection of air bubble defect in tires by digital holography,” Opt. Precision Eng. 17 (5), 1099–1104 (2009).
13. H. X. Liu, W. Zhou, Q. W. Kuang, L. Cao, and B. Gao, “Defect detection of IC wafer based on spectral subtraction,” IEEE transactions on semiconductor manufacturing 23 (1), 141–147 (2010).
14. H. Y. T. Ngan and G. K. H. Pang, “Regularity analysis for patterned texture inspection,” IEEE Transactions on automation science and engineering 6 (1), 131–144 (2009).
15. D. Tsai and T. Huang, “Automated surface inspection for statistical textures,” Image and Vision computing 21 (4), 307–323 (2003).
16. Y. Han and P. Shi, “An adaptive level-selecting wavelet transform for texture defect detection,” Image and Vision computing 25 (8), 1239–1248 (2007).
17. K. L. Mak and P. Peng, “An automated inspection system for textile fabrics based on Gabor filters,” Robotics and Computer-Integrated Manufacturing 24 (3), 359–369 (2008).
18. U. Farooq, T. King, P. H. Gaskell, and N. Kapur, “Machine vision using image data feedback for fault detection in complex deformable webs,” Transactions of the Institute of Measurement and Control 26 (2), 119–137 (2004).
19. C. J. Kuo and T. Su, “Gray relational analysis for recognizing fabric defects,” Textile Research Journal 73 (5), 461–465 (2003).
20. H. Y. T. Ngan, G. K. H. Pang, and N. H. C. Yung, “Performance evaluation for motif-based patterned texture defect detection,” IEEE Transactions on Automation Science and Engineering 7 (1), 58–72 (2010).
21. S. Ghorai, A. Mukherjee, M. Gangadaran, and P. K. Dutta, “Automatic defect detection on hot-rolled flat steel products,” IEEE Transactions on Instrumentation and Measurement 62 (3), 612–621 (2013).
22. X. L. Li, S. K. Tso, X. P. Guan, and Q. Huang, “Improving automatic detection of defects in castings by applying wavelet technique,” IEEE Transactions on Industrial Electronics 53 (6), 1927–1934 (2006).
23. G. Zhao and Sh. Qin, “High-Precision Detection of Defects of Tire Texture through X-ray Imaging Based on Local Inverse Difference Moment Features”, Sensors, vol 18, no. 8, 2018.